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In many models of genotypic evolution, the vector of genotype populations satisfies a
system of linear ordinary differential equations. This system of equations models a com-
petition between differential replication rates (fitness) and mutation. Mutation operates
as a generalized diffusion process on genotype space. In the large time asymptotics, the
replication term tends to produce a single dominant quasi-species, unless the mutation
rate is too high, in which case the asymptotic population becomes de-localized. We
introduce a more macroscopic picture of genotypic evolution wherein a random fitness
term in the linear model produces features analogous to Anderson localization. When
coupled with density dependent non-linearities, which limit the population of any given
genotype, we obtain a model whose large time asymptotics display stable genotypic
diversity.

KEY WORDS: quasi-species, spin glass models, non-linearity, Anderson localization,
genotypic diversity, paramuse model, Eigen model

1. INTRODUCTION

Explaining the persistence of biological diversity is a longstanding problem of
considerable interest in evolutionary theory, see e.g. see Refs. 6 and 18. This paper
contains a proposal for a class of theories of genotypic evolution that display
stable, arbitrarily complex, genetic diversity. Our models are built out of pieces
that have been on the shelves for quite a while, but perhaps have not before been
placed together.
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We start out with linear “spin glass” models, which cast genotypic evolution
as competing processes of replication and mutation, see Refs. 3, 4, 12, 20, 23.
Suppose that the possible genotypes are labeled by the integers {1, . . . , N } and
P(t) = (P1(t), . . . , PN (t)) is a vector, with Pj (t) the population of genotype j at
time t. The standard linear model for genotypic evolution is a system of ordinary
differential equations:

dP(t)

dt
= (R + M)P(t). (1)

Here M describes the process of mutation and R the net replication rate of
each genotype; it is called the “fitness matrix.” For reasonable evolutionary models,
the largest eigenvalue, λPF, of the combined system R + M, (called the Perron-
Frobenius eigenvalue) corresponds to a positive eigenvector vPF. An eigenvector
that is highly localized near a single genotype is said to represent a quasi-species. In
the large time limit, the solution to (1) behaves like 〈P(0), vPF〉eλPFt . Hence, either
the population is de-localized, or the fastest replicating quasi-species dominates.
In either case there is no plurality of well defined quasi-species.

We posit the existence of fitness matrices so that, if ‖M‖ is sufficiently small,
then the combined replication-mutation system exhibits properties, in the limit
of large genome length, analogous to Anderson localization, see Refs. 2, 5, 17,
22. This means that, if {λ1 ≤ λ2 ≤ . . . < λN } are the eigenvalues of R + M and
{ψα} the corresponding eigenvectors, then, for eigenvalues close to λN = λPF, the
eigenvectors are highly localized and their overlaps are not correlated with the
differences {|λα − λβ |}. Such a model already exhibits a weak form of genetic
diversity, having a large number of well defined, well separated, “long-lived”
quasi-species.

As noted, in a linear model it is inevitable that in the long run, either a single
quasi-species comes to dominate, or localization breaks down and there are no
well defined quasi-species. To address this, we add a density dependent quadratic
term and a constant F, that limit the growth of any given genotype, and select out
a certain subset of long lived quasi-species. The model we obtain is the non-linear
ODE system:

dP

dt
(t) = (R + M + F)P(t) − bP. ∗ P(t), (2)

where [P. ∗ P] j = P2
j . We call F the environmental fecundity, as it is a measure

of the potential for quasi-species diversity. This step is suggested by a paper of
Nelson and Shnerb, where they show, in a continuum population biology model,
that such a term, when coupled to Anderson localization does in fact lead to an
asymptotic state with stable diversity, see Ref. 15.

In this paper we consider questions related to the long time macro-
scopic structure of genotypic evolution. Our results can be seen as providing a



Anderson Localization, Non-linearity and Stable Genetic Diversity 27

mathematical correlate to, though not a precise model for, the digital evolution ex-
periments described in Ref. 6, wherein resource limitations produce stable genetic
diversity. We focus on aspects of linear models that are connected to the random-
ness of the fitness matrix, and beyond that, on the consequences of non-linear
corrections that may be seen as accounting for the finiteness of resources.

The main contribution of this paper is to put these two pieces together in
the context of genotypic evolution and suggest potentially fruitful directions for
further research in both evolution and spectral theory. In small numerical examples
we show that our localization hypothesis is not unreasonable, and that the non-
linear model behaves as predicted. The rigorously established results showing that
localization occurs for Schrödinger operators with sufficiently weak diffusion, and
that, when it occurs, it is generic, give support for the idea that such models should
exist and that the localization property should be insensitive to the details of the
model. Finally, there is a certain sublime beauty to a world in which the complexity
of the mapping from genotype to fitness conspires with environmental limitations
on population size to produce stable genetic diversity.

2. LINEAR MODELS

Recently there has been a great deal of interest in the connections between
various models that arise in statistical mechanics and models of genetic evolution.
Early models were defined by Eigen and Crow-Kimura, see Refs. 3, 7, 8, 11.
For a good survey of this subject with many further references to the literature
see Ref. 13. Genotypes are described as finite sequences (s1, . . . , sn), where the
entries {s j } are drawn from a finite alphabet. For example, if one wishes to model
chromosomal evolution, then the alphabet is that of nucleotides {A, C, G, T } (or,
for RNA, {A, C, G, U }). If one wishes to study protein evolution, then one might
use the list of the 20 amino acids. In the interest of simplicity, most investiga-
tors simply use a two letter alphabet, which can be thought of as purines and
pyrimidines. We follow that convention, but our main results also apply to models
using any finite length alphabet. Let Gn denote the set of possible genotypes of
length n expressed in the given fixed alphabet with 2 members. If all genotypes
are possible, then |Gn| = 2n. In the sequel we let N = 2n . In this case a genotype
can be represented as a string of 0s and 1s and so can interpreted as a binary rep-
resentation of a positive integer. The genotypes can therefore be labeled by the set
of integers Jn = {1, 2, . . . , N }, though this labeling scheme is entirely arbitrary
and conveys no “invariant” information.

One way to specify a model for mutation from one genotype to another is
by assigning probabilities {mi j : i �= j ∈ Jn} that, in a given unit of time, the
genotype Si mutates to the genotype Sj . As above, Pj (t) is the population of
genotype Sj at time t. In addition to mutation, each genotype has a replication
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rate, r j , so that, in the absence of mutation, Pj (t) would satisfy:

d Pj

dt
= r j Pj (t). (3)

Hence r j is the difference of the birth and death rates for the genotype Sj ; it
summarizes the fitness of the genotype. The fitness matrix, R, is defined to be

Ri j =
{

0 if i �= j
ri if i = j.

(4)

In parallel models, the mutational process is described by the mutation matrix,
M, given by:

Mi j =
{

m ji if i �= j

−∑
k �=i mik if i = j.

(5)

The negative diagonal term is required so that the total mutational flux out of
a given genotype, is balanced by an equal decrease in its population. A linear,
parallel model for the time course of the genotype populations is then

dP

dt
= RP + MP. (6)

In many prior papers, this model is described by a non-linear ordinary differential
equation for the population densities,

p(t) = P(t)∑N
j=1 Pj (t)

, (7)

rather than the populations themselves. These non-linear models are equivalent,
under a simple change of variables, to linear models, and it is the linear models
that are amenable to analysis.2

If Si = (s1, . . . , sn), Sj = (s ′
1, . . . , s ′

n) are two genotypes, then the Hamming
distance between them, dH (Si , Sj ), equals the number of entries where they differ.
The mutation probabilities are often taken to be functions of the Hamming distance.
In the paramuse model the mutation matrix is specified by

Mi j =
⎧⎨
⎩

µ if dH (Si , Sj ) = 1
−nµ if i = j

0 otherwise.
(8)

2 The model for population densities determined by (6) is

dp(t)

dt
= (R + M)p(t) − 〈Rp(t), 1〉p(t), (9)

where 1 = (1, . . . , 1). The non-linear term serves only to keep the sum 〈p(t), 1〉 = ∑
j p j (t) equal

to 1.
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The probability-per-unit-time of changing one letter is µ and the probability-
per-unit-time of changing more than one letter is zero.

A second class of models derives from the Eigen model. In this case, the
mutation rate is a function of the Hamming distance of the form

Qi j = qn

(
1 − q

q

)dH (Si ,Sj )

. (10)

The assumption here is that probability-per-unit-time of a mutation occurring
at each site on the genome is equal to 1 − q, and that the different sites mutate
independently of one another. In the Eigen model, the population satisfies the
differential equation

dP

dt
= (Q R − D)P, (11)

here D is a second diagonal matrix, which describes the rate of degradation of a
given genotype. In this model, the mutation process follows the replication process,
rather than the two occurring in parallel. If q ∼ n/(n + µ), then the qualitative
behavior of solutions to (11) is quite similar to the solutions of the paramuse
model.3

In our subsequent analysis we stick to the representation given in (6). The
precise nature of M is less important than the assumption that the matrices {et M :
t > 0} should have the qualitative properties of a diffusion process in that they
should be positivity improving, i.e. if P0 is a vector with non-negative coefficients,
then et M P0 has positive coefficients. For finite matrices, this condition essentially
amounts to the requirement that the off-diagonal entries of M are non-negative.
One also expects the matrix elements Mi j to decrease rapidly as dH (Si , Sj ) grows.

In these models, a quasi-species is represented by a population vector, P, that
is highly concentrated around a single vertex or small cluster of nearby vertices,
in the sense of Hamming distance, see Refs. 9, 10, 14. A population vector with
several such clusters, which are well separated, would then represent a collection
of quasi-species. As remarked above, the mutation process is like a diffusion. The
eigenvectors of the matrix M are not localized, and the Perron-Frobenius Theorem
implies that the largest eigenvalue of M, νPF, corresponds to an eigenvector uPF all
of whose entries are positive; usually

√
NuPF = (1, . . . , 1). Under the effects of

3 A priori, this model looks rather different from (6) with M defined in 8, but if we make the substitution
W = √

RP, then
dW

dt
= (

√
RQ

√
R − D)W, (12)

so that the matrix on the right hand side is again symmetric, with non-negative, rapidly decaying
off-diagonal entries. With q ∼ n/(n + µ), the matrix

√
RQ

√
R − D = (R − D) + O(µ), so, for

small µ, the general character of the model is again determined by the distribution of entries along
the diagonal of R − D.
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mutation alone, any initially non-negative population, P0, behaves asymptotically
as

P(t) ∼ 〈P0, uPF〉uPFeνPFt . (13)

So the effect of the mutational process is to smear out the population and
destroy any localized populations that might be present in the initial distribution
of genotypes.

On the other hand, the fitness matrix R is diagonal; if it has distinct entries,
then each basis vector e j = (0, . . . , 0, 1, 0, . . . , 0) (a single 1 in the j th place)
defines a quasi-species. In the absence of mutation, the population of this quasi-
species evolves as er j t Pj (0). The matrix (R + M) is also positivity improving,
and hence has a positive Perron-Frobenius eigenvector, vPF, corresponding to
the largest eigenvalue, λPF. If vPF is localized, then this is a quasi-species with
replication rate λPF. From our perspective, the problem here is that, in the long time
limit, the population will again satisfy P(t) ∼ 〈P0, vPF〉vPFeλPFt , and be dominated
by the population distribution (quasi-species or not) with this highest replication
rate.

In most prior analyses of these models, this was not viewed as a difficulty, for
the problem under analysis was the stability of a single quasi-species under various
levels of mutation, with different choices of simple fitness landscapes, having a
small number of minima and maxima. This sort of analysis can be regarded as
focusing on a small neighborhood of a vertex inGn : If we assume that m << n sites
participate in the evolutionary process, then the analysis proceeds on Gm viewed
as a subgraph of Gn. On this subgraph (length scale), even a macroscopically
random fitness landscape could well appear quite simple. Hence, thermodynamic
analyses, like those in Refs. 16 and 20, can be viewed as genotypically localized,
short time analyses that take place within the larger macroscopic framework of
genetic evolution.

3. ANDERSON LOCALIZATION

The combined linear model given in (6) represents a competition between the
replication term, which, if the diagonal entries are distinct, tends to preserve quasi-
species, and the mutation term, which tends to destroy them. As such, these models
have a great deal in common with the models for conduction in semiconductors
studied by Anderson. He considered models similar to

∂t u(x, t) = (µ� + q(x) + E)u(x, t), (14)

where u(x, t) is a non-negative function defined on R
d , � is the standard Laplace

operator, and q(x) is a bounded “random” potential. This does not mean that
q(x) is an irregular function, but rather that it is non-periodic and lacking any
simple asymptotic behavior as ‖x‖ tends to infinity. (A simple example in 1D is
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cos x + cos
√

2x .) From Anderson’s seminal work and many subsequent analyses,
it has become clear that there is a very fundamental and generic localization
property shared by systems with q(x) a random “potential.” It is an analogue of
this property that we posit for our linear models.

For each genome length n, we suppose that the fitness matrix Rn is random,
constantly varying throughout genotype space and neither periodic nor with any
asymptotic behavior. This does not preclude the fitness landscape from being
locally smooth or having large regions where it is approximately constant. We let
{Ln = Rn + Mn : n = 1, 2, . . .} denote a sequence of linear operators acting on
functions on Gn. In our subsequent analysis we use the following

localization ansatz:

As n tends to infinity, the spectrum of the operators Ln becomes dense in some interval
with right end point λN = sup spec(Ln). The corresponding normalized eigenvec-
tors become exponentially localized, with the overlaps in support uncorrelated to
differences in the eigenvalues.

Operationally, the localization ansatz is that, for large enough n, Ln has a
large number of eigenvalues close to λN , such that the corresponding normalized
eigenvectors {ψα} are highly localized, and the overlaps in their supports are
uncorrelated with the differences {|λα − λβ |}. Quantitatively we take this to mean
that for each α, there is a jα ∈ Jn and positive numbers ξα, Cα, so that

|ψα( j)| < Cαe− dH ( j, jα )
ξα , (15)

and dH ( jα, jβ ) is large, with high probability, if |λα − λβ | is small. Moreover,
we assume that the numbers {ψα( j) : j ∈ Jn} are positive for most values of j.
Because of exponential localization, this assumption does not contradict the fact
that the eigenvectors are an orthonormal set.

One might want to suppose that the matrices {Rn} converge to an infinite
diagonal matrix R∞, and the sequence of mutation matrices {Mn} converge, in
some sense, to an operator M∞ acting on 	2, so that one could speak of the
behavior of the limiting operator L∞ = R∞ + M∞. As each genotype in G∞ has
infinitely many nearest neighbors, it is by no means obvious how to normalize
the sequence {Mn} so that the limit produces a non-trivial diffusion process. At
realistic mutation rates, genotype space seems to be explored very slowly, so there
is not much practical difference between a very large, but finite length genome,
and an infinite length genome.

There are other situations where the eigenvectors of Ln are highly localized.
For example, if the diagonal matrix Rn has distinct and, say, strictly monotonically
increasing entries, then it is again the case that, for small enough ‖Mn‖, the
eigenvectors are highly localized. What distinguishes this case from the random
case is that now the overlaps in the eigenvectors are highly correlated with the
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difference in eigenvalue: if |λα − λβ | is small, then is very likely that the peak of
ψα is close to the peak of ψβ. This becomes quite important when we consider the
effects of the non-linear corrections.

To the best of our knowledge, this precise situation has not yet been analyzed,
though considerable effort has been devoted to studying analogous questions on
the lattices Z

d , and Anderson Localization has been rigorously established in
many representative cases, see Ref. 17. In the physics literature it has been shown
that Anderson Localization occurs for a system based on the Bethe lattice, see
Ref. 1. This is of interest for us, as the Bethe lattice embeds isometrically into
the hyperbolic plane. Hence this indicates that the more efficient diffusion, which
occurs in negatively curved spaces, does not destroy Anderson Localization. We
emphasize that we have not proved the assertion that these models exhibit Anderson
Localization and so, in the final section, we give some numerical examples showing
that these models display many of the qualitative properties of Anderson Localized
systems.

4. WEAK GENETIC DIVERSITY

Before considering the role of non-linearities, we consider what a linear
model satisfying the localization ansatz would predict. Let us fix a large value
of n so that Ln has many exponentially localized, well separated eigenstates for
eigenvalues near to λN . We follow the continuum model and explicitly include a
scalar, F, in our system:

dP

dt
= (Ln + F)P. (16)

In a linear model, the addition of F has no qualitative effect on the population
distribution, it simply scales the solution at time t by et F . As we shall see, this is
no longer the case once we include non-linear corrections.

If P0 is an initial population distribution, then evolving under Eq. (16), the
population satisfies:

P(t) =
∑

α

〈P0, ψα〉ψαe(F+λα )t . (17)

The numbers {F + λα} are therefore the replication rates for the quasi-
species {ψα}.4 For long times, only the terms with F + λα > 0 make a significant
contribution to P(t). The λN -term is still the dominant term, but there are many
terms with λN − λα quite small, which therefore make significant contributions
for a long time. Because these eigenstates are well localized and well separated,

4 In this context we refer, by analogy, to all of the eigenvectors of Ln as quasi-species though they may
be neither localized, nor mostly positive.
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there can be different dominant terms at different locations in genotype space.
Thus, even without non-linear corrections, a model satisfying the localization
ansatz would exhibit some kind of genetic diversity, which we call weak genetic
diversity.

5. NON-LINEAR EFFECTS

In Ref. 15 Nelson and Shnerb modify the model in (14) by adding, among
other things, a non-linear term:

ut (x, t) = (µ� + q(x) + F)u(x, t) − bu2(x, t), (18)

where b > 0. The effect of this term is to limit u(x, t) from above. The analogue
of the model in (18) is an equation of the form:

dP(t)

dt
= (L + F)P(t) − bP(t). ∗ P(t), (19)

with L = Rn + Mn. Here we use the MATLAB® notation for component-wise
vector multiplication: if v = (v1, . . . , vm) and w = (w1, . . . , wm), then v. ∗ w =
(v1w1, v2w2, . . . , vmwm). For this discussion we take n to be a fixed, sufficiently
large integer and Mn given by (5), though much of what we say should remain true
with any reasonable choice of mutation matrix.5 One can add other non-linearities
and obtain models with similar qualitative behavior. These models along with their
basic mathematical properties are described in the Appendix.

The remarkable observation made by Nelson and Shnerb is that, if µ� + q(x)
(in (18)) exhibits Anderson localization, then the large time asymptotics of the
non-linear equation actually depend on all the eigenvalues, {να}, of µ� + q(x)
with να + F > 0. If L satisfies the localization ansatz, then the asymptotic analysis
used in Ref. 15 applies, mutatis mutandis to (19). We present their analysis, in our
context.

The spectrum, {λα}, of L is quite dense near to λN , and the corresponding
eigenvectors, {ψα}, are highly localized. As before we express the initial data as

P(0) =
∑

α

〈P(0), ψα〉ψα =
∑

α

cα(0)ψα, (20)

5 The analogue of (19), for the Eigen model, in the formulation given in Eq. (12), is:

dW

dt
= (L + F)W − bR

− 1
2

n W. ∗ W, (21)

with L = √
Rn Qn

√
Rn − Dn . Numerically, this model behaves very similarly to that defined in (19).
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where cα(t) = 〈P(t), ψα〉. Under (18), these coefficients evolve according to:

cα(t)

dt
= (F + λα)cα(t) − b

∑
β,γ

wα,βγ cβ(t)cγ (t), (22)

where

wα,βγ =
∑

j

ψα( j)ψβ( j)ψγ ( j). (23)

We assume that F is selected so that the eigenvectors, ψα, corresponding
to eigenvalues with F + λα ≥ 0, satisfy the localization properties enumerated
above. Following Nelson and Shnerb, we further assume that the states with
F + λα < 0 are not relevant for the large time asymptotics. The localization ansatz
implies that, if F + λα > 0, and |λα − λβ | is small, then, with high probability,
unless α = β = γ, wα,βγ is very small. Letting wα = wα,αα we see that therefore

dcα(t)

dt
≈ (F + λα)cα(t) − bwαc2

α(t). (24)

We can solve (24) to obtain:

cα(t) = cα(0)e(F+λα )t

1 + cα(0) bwα

F+λα

(
e(F+λα )t − 1

) . (25)

Hence as t → ∞, all coefficients such that F + λα > 0 have a finite, non-zero
asymptotic value given by

lim
t→∞ cα(t) = F + λα

bwα

. (26)

As each eigenvector, ψα, represents a distinct quasi-species, coupling local-
ization in genotype space with a simple non-linearity produces a model exhibiting
long time genetic diversity. As t tends to infinity, the model predicts a collection
of distinct quasi-species, occupying different parts of genotype space, whose size
is determined by F . This explains why we call F the environmental fecundity. In
a situation like that described in Ref. 6, F would be a unimodal function of the
productivity, increasing to a maximum and then falling off.

What distinguishes a random fitness matrix from one with monotonely in-
creasing diagonal entries is that, in the latter case, the eigenvectors with significant
overlaps in their supports tend to have nearby replication rates. Hence, when the
non-linear terms are included, paths exist in the “replication landscape” defined
by the coefficients {wα,βγ }, which give the population the opportunity to cascade
toward quasi-species with lower replication rates. This claim is born out by the
numerical simulations of the non-linear equation in the next section. In the random
case, no such paths exist and this further supports our claim that these models will
display stable genetic diversity. It also suggests a connection between these models
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and an interesting percolation problem on a replication landscape defined by the
spectral theory of L .

6. NUMERICAL EXPERIMENTS

In this section we present several numerical experiments. If the genome length
is n, then the matrix size is 2n × 2n, hence, at present, we are limited to n ≤ 11.

This should be compared to a viral genome with size about n = 105 or the human
genome, with size of n = 3 × 109, hence, these experiments should be understood
as merely illustrative.

In a variety of papers, notably in Ref. 20, it is shown that, in order for quasi-
species to exist in the large n limit, it is necessary that nµ be less than the maximal
diagonal term in the fitness matrix. For our numerical simulations we divide by n
so that µ is fixed and

Mi j =

⎧⎪⎨
⎪⎩

−µ if i = j
µ

n if dH (i, j) = 1

0 otherwise.

(27)

We then compute the eigenvalues and eigenvectors of matrices of the form
L = R + M, where R is a diagonal matrix with (pseudo)random, uniformly dis-
tributed entries, scaled to lie in [0, 1]. Physically this amounts to replacing the
time parameter t by t/n. For purposes of comparison, we also consider diagonal
matrices with distinct but smoothly growing entries, e.g. Rii = tanh(2−ni), the
“monotone” model, and fitness matrices arising in single peak fitness landscapes,
Rii = 1/(1 + dH (Si , S0)), the “1-peak” model. Here S0 = (1, 1, . . . , 1).

6.1. The Spectrum

For a given matrix L , let {λα} denote the spectrum and {ψα}, the correspond-
ing normalized eigenvectors. The eigenvalues are indexed in increasing order. In
our experiments we see that, with a random fitness matrix, the spectrum is dis-
tributed fairly uniformly over an interval, with decreasing density near the upper
endpoint, see Fig. 1. This is in agreement with known results on the spectral den-
sity function for Anderson localized systems in the continuum case, see Refs. 2
and 22.

6.2. Localization

The matrices we consider are symmetric, so the eigenvectors are real and
orthonormal:

2n∑
k=1

ψα(k)ψβ(k) = δαβ. (28)
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Fig. 1. The spectrum of a random model, with n = 11 and µ = 10−5.

To measure the extent of the localization of the eigenvectors we compute the cubic
sum deficit

Cα = 1 −
2n∑

k=1

|ψα(k)|3. (29)

If the eigenvectors were perfectly localized then Cα would be zero. If the
eigenvectors were completely de-localized, then Cα = 1 − 2− n

2 . To measure the
localization of the eigenvectors, we compute the mean cubic sum deficit:

D3 = 1

2n

2n∑
α=1

⎡
⎣1 −

2n∑
j=1

|ψα( j)|3
⎤
⎦ . (30)

Figure 2 shows the log10 D3, for three different types of fitness matrix as a function
of log10 µ. The random and monotone models show localization and the 1-peak
model does not. For n = 10 and µ = 0.0001, we evaluated the cubic sum deficits
{Cα} for a random and a monotone model. For the random model, and eigenvalues
in the interval [0.8, 1], the numbers Cα < 4.5 × 10−6. For the monotone model,
Cα < 6.802 × 10−4, for eigenvalues in this range. Hence near to the Perron-
Frobenius eigenvalue, the random model is better localized than the monotone
model.

6.3. Separation of Peaks

In the second set of experiments, we show that, for the random model, the
supports of the eigenvectors with nearby energies are randomly distributed. As
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Fig. 2. The log10 D3, as a function of log10 µ, for 3 representative models with n = 10.

noted above, the indexing by j ∈ Jn is entirely arbitrary, so to demonstrate this we
locate the peaks of the eigenvectors and plot the mean Hamming distance between
peaks, for eigenvectors with eigenvalues that differ by at most 0.05.6 If jα ∈ Jn

is the index of the peak of ψα, then the plots in Fig. 3 show

dα =

∑
{β: |λα−λβ |<.05}

dH (Sjα , Sjβ )

#{β : |λα − λβ | < 0.05} , (31)

with α along the horizontal axes, for both the random and the monotone models.
Plots are shown for three different values of n with µ = 0.001. We note that the
random model behaves as if the peaks are uniformly distributed on Gn, whereas,
for the monotone model, the peaks of eigenvectors corresponding to nearby eigen-
values have a strong tendency to cluster.7

In Fig. 4 we show the actual Hamming distances between the peaks of the
eigenvectors, for a random model and a monotone model with n = 11 and µ =
0.001. The checkerboard plots in Fig. 4 show the distances for the eigenvectors
corresponding to the 60 largest eigenvectors. The eigenvalue is decreasing from
left to right and down to up in these figures. The distances in the random model
are clearly much more randomly distributed than in the monotone case, and much
more likely to be large.

6 These operators are normalized so that their spectra lie in the interval [0, 1].
7 For uniformly distributed points in Gn, the expected distance between points is n/2 and the variance

is n/4.
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Fig. 3. The mean Hamming distance between the peaks of eigenvectors, with eigenvalue difference
less than 0.05.

6.4. Non-Linear Models

In the third set of experiments we show runs of the non-linear model given
in Eq. (19), with a random fitness matrix, a monotone fitness matrix, and a 1-peak
fitness matrix. We use a genome of length n = 8, b = .02, and µ = .01. The
fecundity F is selected so that, for the random model, we expect an asymptotic
population of 20. Each plot shows several time steps, with the asymptotic state
(the outer envelope) shown in black. The horizontal axis is the genotype labeled
by J8. In Fig. 5 we see that the random and 1-peak models each have essentially
the predicted number of quasi-species, whereas the monotone model has a single,
very broad, quasi-species. This would seem to be a result of cascading in the
non-linear model, allowed by the proximity of the supports of eigenvectors with
nearby eigenvalues.

The final set of figures shows the “phase transition” that occurs as the mutation
rate is increased. Such phase transitions are typical of Anderson Localized systems.
For Fig. 6(a), we solved Eq. (19) with n = 8, b = .02, and µ ranging from .001 to
100. For Fig. 6(b), we solved Eq. (21) for the Eigen model, with n = 8, b = .02,

and q = 8/(µ + 8) for the same values of µ. The degradation matrix D has
random entries lying in [0, 0.2]. We show the asymptotic population densities,
P(∞)/

∑
j Pj (∞). The initial vector is (1, . . . , 1); as is clear from Eq. (26), any

non-negative (non-trivial) initial datum produces the same asymptotic state. The
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Fig. 4. The Hamming distances between the peaks of the eigenvectors corresponding to the 60 largest
eigenvalues. The eigenvalues are listed in descending order with the lower left corner corresponding
to (λN , λN ).

transition from localized populations to de-localized populations is quite apparent.
Of course, a true phase transition can only occur in the infinite n limit. The front
axis shows that genotype labeled by J8. The scaled logarithm of the mutation rate
is shown on the other horizontal axis.
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(a) A random model.
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(b) A 1-peak model.
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(c) A monotone model.

Fig. 5. Several time-steps of non-linear parallel models with different types of fitness matrices. The
genotypes, interpreted as a binary numbers, appear on the horizontal axis, and the vertical axis shows
the population density of each genotype.
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Fig. 6. Solutions of the non-linear models, 19 and 21, showing the population densities, with a variety
of different mutation rates. The parameters are n = 8, b = .02, P0 = (1, . . . , 1). The fecundity F is
selected so that L + F has 20 positive eigenvalues. The “front” axis shows the genotypes, interpreted
as binary numbers. The mutation rate, on a log-scale, is shown on the front-to-back horizontal axis.
The vertical axis shows the asymptotic population densities P(∞)/〈P(∞), 1〉.

APPENDIX A. MORE GENERAL CLASSES OF NON-LINEAR MODELS

Instead of the constant b in Eq. (18) we could use a positive L + F-super-
harmonic function B(x) to obtain the equation

ut (x, t) = (L + F)u(x, t) − B(x)u2(x, t). (32)

The function B(x) is L + F super-harmonic if

(L + F)B(x) − B3(x) < 0. (33)
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In this case the maximum principle shows that if initial data satisfies u(x, 0) <

B(x) for all x, then u(x, t) < B(x) for all x and t > 0.

We can apply similar considerations to a somewhat larger class of models, in
which we include a second non-linearity to limit the total population

ut (x, t) = (L + F)u(x, t) − B(x)u2(x, t) − pu(x, t)
∫

u(x, t) dx . (34)

The second, non-local term, can be shown to impose a limit on the total population∫
u(x, t)dx, which the first term does not do. One can also show that, so long

as B(x) > c > 0, the asymptotic behavior of a non-negative solution of (34) is
similar to that for Eq. (18). If B ≡ 0, then the model in (34) has many critical
points, none stable and none with a large number of non-zero coefficients.

By analogy, we let B be a positive L + F-super-harmonic vector, that is

(L + F)B − B. ∗ B. ∗ B < 0.

If we replace Eq. (19) with

dP(t)

dt
= (L + F)P(t) − B. ∗ P(t). ∗ P(t), (35)

and 0 ≤ Pj (0) < B j for all j, then 0 ≤ Pj (t) < B j for all j and t > 0. A model
similar to 34 is given by

dP(t)

dt
= (L + F)P(t) − B. ∗ P(t). ∗ P(t) − β〈P, 1〉P, (36)

where β > 0 and 1 = (1, . . . , 1). These models are all positivity preserving. Their
basic mathematical properties are established in the next section. It seems a very
interesting and important problem to find the biologically relevant non-linear
correction terms, and understand how they interact with an Anderson localized
linear model.

APPENDIX B. MATHEMATICAL RESULTS

We consider models of the following general type:

dP

dt
= LP − B. ∗ P. ∗ P − β〈P, 1〉P (37)

where B is a pointwise positive, super-harmonic vector and β is a non-negative
number. Here L = � + A, where � is a diagonal matrix and A is a matrix with
zeroes on the diagonal and non-negative entries off the diagonal. This splitting of
L into diagonal and non-diagonal parts is a little different from that used in the
main article, but should not lead to confusion.

In order for such an equation to define a reasonable population model, it
is necessary that it be positivity preserving. That is, if the initial data P(0) has
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non-negative entries, then P(t) is non-negative for all t > 0. The models of the
type given in (37) have this property. This is established in two steps and uses the
Kato-Trotter product formula and its non-linear generalization.

We first treat the linear part. The solution to the linear equation ∂t P = LP is
given by

P(t) = et LP(0) = et(�+A)P(0), (38)

where the matrix exponential is given by the usual formula, e.g.

et B =
∞∑
j=0

(t B) j

j!
. (39)

From this expression it is immediate that et A has non-negative entries for
every t > 0. Indeed for the models considered above et A has positive entries for
all t > 0. Because � and A do not commute, it does not follow immediately
that et L = et(�+A) also has positive entries. To prove this we use the Kato-Trotter
product formula, which states that

et(�+A) = lim
n→∞

[
e

t
n �e

t
n A

]n
. (40)

As the right hand side expresses et L as a limit of products of matrices with
positive entries, it follows that et L also has non-negative entries. With a little more
care we can show that, in fact, et L has positive entries. Hence the linear model is
positivity preserving. For a thorough discussion of positivity preserving operators
see section XII.12 of Ref. 19.

In Ref. 21 a non-linear generalization of the Kato-Trotter formula is given
for non-linearities including the type in (37). We first observe that the vector field
defined on R

2n
by

X (P) = −B. ∗ P. ∗ P − β〈P, 1〉P (41)

is tangent to the coordinate hyperplanes {P : Pj = 0}, and therefore the positive
orthant, {P : Pj > 0 for all j}, is invariant under the flow generated by this vector
field. From this and the fact that the right hand side in (41) is negative in the
positive orthant, it follows that if we start with non-negative initial data, then the
equation

dP

dt
= X (P), (42)

has a unique bounded solution for all t > 0. Let X t P(0) denote the solution to (42)
with initial data P(0). In Ref. 21 it is shown that the solution to (37) can be obtained
as the following limit:

P(t) = lim
n→∞

[
e

t
n LX t

n
]n

P(0). (43)
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As X t is positivity preserving and et L is positivity improving, it follows that
the equation in (37) is also positivity preserving. A small modification of this
formula, useful for numerical simulations is called “Strang’s splitting:”

P(t) = lim
n→∞

[
X t

2n e
t
n LX t

2n
]n

P(0). (44)

We now consider the constraints imposed on the solution by the non-
linearities. Assuming that P(t) is non-negative, it follows that there is a constant
C such that

〈LP, 1〉 ≤ C〈P, 1〉. (45)

Thus, a non-negative solution to (37) satisfies the differential inequality:

d〈P, 1〉
dt

≤ C〈P, 1〉 − β〈P, 1〉2. (46)

This easily implies that if the initial population 〈P(0), 1〉 < β−1C, then the
total population never exceeds β−1C. Moreover, if the population initially exceeds
this value, then it decreases at time goes by. Combining this observation with the
positivity preserving property, we deduce that, with non-negative initial data, the
solution to (37) exists for all t > 0.

For the other non-linearity we use the hypothesis that A has non-negative
entries off the main diagonal. We suppose that Pj (0) < B j (0) for all j . Suppose
that there were a j0 and a first t0 > 0, where Pj0 (t0) = B j0 (t0). In this case it would
still be true that Pj (t0) ≤ B j (t0), for all j. Hence, our assumption on A and the
fact that the remaining terms in L are diagonal, would imply that

(LP(t0)) j0 ≤ (LB) j0 . (47)

As the solution is non-negative this would imply the differential inequality(
d Pj0 (t0)

dt

)
≤ (LB) j0 − (B. ∗ B. ∗ B) j0 < 0 (48)

The last inequality is because B is assumed to be super-harmonic. But this
contradicts the assumption that Pj0 (t) < Pj0 (t0), for t < t0.

To sum up we have proved the following theorem:

Theorem 1. If P(0) is non-negative, then the solution, P(t), to (37) exists for all
time and remains non-negative. If 〈P(0), 1〉 < β−1C, then this remains true for all
time, and in any case remains bounded. If B is a positive super-harmonic vector,
LB − B. ∗ B. ∗ B < 0, and Pj (0) < B j , for all j, then this inequality remains
true for all t > 0.

It is likely that by treating the two non-linearities together, rather than sepa-
rately as done above, more precise constraints could be obtained.
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